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We provide a formula and an upper bound for the average over the disorder of
the pair correlation function of ±J Ising spin glasses by using the symmetries
of the system, We show the decay of the mean spin pair correlation function
when the proportion of antiferromagnetic bonds is larger than the critical
parameter associated with the pair dissociation phase transition.
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1. INTRODUCTION

We consider the ±J Ising spin glass on a finite graph G = (V, E) with node
set V and edge set E, and random Hamiltonian given by

where the random vector y e {0, 1}E represents the disorder, and is distributed
according to a product Bernoulli measure nf(y) = p lyl( 1 — p)|E|- |y|, where
\y\ is the Hamming weight of y, for some 0 <p < 1 /2. Given pb e [0, 1 ], let
ftp be given by the relation
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and consider the Gibbs probability measure on Q

where Zfb(y) denotes the partition function of the system. Moreover let

pb:=1 - \/1- pb, with /L = B 12. The aim of this note is to give some
"b " b

properties of the pair correlation function <ap^^ , where < • }n> denotes
Pb Pb

the average under Gibbs measure, by considering its average over the
disorder

Our approach considers the Fortuin-Kasteleyn representation of the
covariance by the random cluster measure (see Okiji and Kasai (1988) or
Newman (1990)). Given ye {0, 1}E, consider the event in Q x {0, I}E given
by

and

the family of unfrustrated bond configurations. The FK probability
measure is then given by

where Zn (y) = exp( — \E\ /L ) Z6 (y) is the partition function, ||(n)|| is the
* "b "b "b

number of clusters contained in the bond configuration (n), and Iv is the
indicator function of the event Uy. Let

where i ~*j means that i and j are linked by a path y of occupied bonds in
(n) (ne= 1, eey), the product Ylesy(~1)Ye being independent of the path
when (n) is unfrustrated. The following relations are well known (see, e.g.,
N. (1990), Coniglio, Liberto, Monroy and Peruggi (1991) or Gandolfi,
Keane and Newman (1992))
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with

and

In a previous work (Mazza (1997)), we have considered the associated
percolation problem by using the local gauge invariance of the system by
looking at a special line of the phase diagram, the so-called Nishimori
line, which is given by the relation pb = P*, where  p*
for 0«S/?<l /2 , tanh(/?p.) = l-2/> (Nishimori (1980)). We proved that
Aveg^/^X/^), h(pb):=pb/(2-pb), where > denotes stochastic
domination, yielding the critical value p = (1 — pc(Zd))/2, G = Zd, where
pc(Zd) is the critical bond probability associated with independent percola-
tion on Zd, d>2. Gandolfi (1997) observed in fact that the proof given in
(M. (1997)) gives the identity Ave)Sl,(^)=/i§ ,, pb = p*, and extended
this result to systems with fixed boundary conditions. Comparison with the
phase diagrams of the binary tree (Carlson et al. (1990)) and of the cactus
tree (Katsura (1977)) reveals the existence of a domain of the (p, Tb)
diagram, Tb: = f}~1, where percolation occurs but Ave(g,«CT,-oi>>^) ->0 as
lly — i\\ -> oo. The nature of this phase is unclear, and is under current
numerical investigation (see, e.g., Cataudella et al. (1991, 1994) or Imaoka,
Ikeda and Kasai (1997)). In this work, we use the symmetries of the
problem to give a formula for the mean pair correlation function as well as
an upper bound of the form

The above inequality shows the appearance of a Gibbs measure
having the same Hamiltonian but viewed at a new temperature: the
average of the pair correlation function is bounded by the product of a
ferromagnetic pair correlation function under a temperature of disorder
[Ip,1 given by tanh(/?p.) = 1 — 2p, with the average over the disorder of the
FK mass /^t/—»./). This implies the decay of the mean spin pair correla-
tion function when the amount of disorder is larger than the critical
parameter associated with the pair dissociation phase transition.

2. PRELIMINARIES

Given V{ <=. V, the set of edges c <=. E each of which is incident at a
node in V1 and at a node of V2 = V\V1 is called a cut in G. The set of such

:= 1 - Jp/(1 - p),
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cuts is denoted by (6. Let GF(2) be the field of two elements. To every sub-
set ScE of edges is associated a binary vector fseGF(2)|E|, called the
characteristic vector of S, given by fs(e) = 0 if e $ S and fs(e) = 1 otherwise.
The set of characteristic vectors associated with the cuts form a linear sub-
space <& of GF(2)|E| of dimension \V\ — |G|, where \G\ denotes the number
of connected components of G. In the remaining, we assume that |G| = 1.
The incidence matrix of the graph is the \V\ x |E| binary matrix DG in
which rows i=1,..., \V\ are the characteristic vectors associated to the
elementary cuts c(i)e^, that is the cuts associated with characteristic vec-
tors f s i , where S, denotes the set of edges incident to ;'. DG has rank
\V\ — 1, the relation being given by £/6xc(i) = 0 mod 2. Every subset of
| V\ — 1 rows of DG forms a basis of <&. In this work, we see ^ as a linear
code over GF(2), the cut code of G. (see, e.g., Biggs (1992)).

We next recall some definitions and results given in M. (1997). A func-
tion f: GF(2)|E| -> R is said to be gauge invariant when f(y + c) = f ( y ) ,
VyeGF(2)|E | , ce^. For example maxffef t Hy(a), Z^y} and the FK
measure n*((n}} on a fixed subgraph (n) are gauge invariant. For such
functions,

for every linear supplement 3~ of m. The fact of choosing a particular linear
supplement 9~ is called gauge fixing. Let ftf be the marginal of pf on y.
Then, if is gauge invariant

Let zp:=pl(\-p\p<\. Then /*»(/) = (1 - p)|E| Zce* zp|l + c|. Given ?< 1
and Pq given by q= 1 — exp( —ftq), y f f ? eR , let Z q ( y ) be the Ising partition
function associated with the disorder y and real inverse temperature f i q .
Given p e [ 0 , 1[, let

Then we have Fradkin-Hubermann-Shenker (1978) relation (see, e.g., M.
(1997))

The Nishimori line is given by the relation pb = p*, p<\/2, where we
recall that pb =v1 — pb. On this line Ave^f/^) =//®/I >, where
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h(pb) = pb/(2-pb) (see M. (1997) or G. (1997)). When G is bipartite, the
same identity holds when pb = (1 — p)*, p > 1/2.

Let g be a spanning tree of G. Let Tg be the linear space over GF(2)|E|

generated by the characteristic vectors associated with the edges of E\E(g),
taken one by one, where E(g) denotes the edge set of g. Then Tg is a linear
supplement of #, with te&"g=>te = 0, Veeg.

Given a linear code 5f of GF(2){El and seR, consider the weight
enumerator W#(s) := Y.«,e^s^- Consider the inner product < x , x ' > : =
~5LeeExex'e mod 2, x, x' e GF(2)|E|; the dual of any linear code & is given
by

For example, the dual of the cut code consists in all Eulerian subgraphs of
G, that is the set of all subgraphs in which node have even degrees. One
important fact is MacWilliams identity (see, e.g., Roman (1992))

A basic example is van der Waerden's Eulerian expansion of the
ferromagnetic partition function (van der Waerden (1941)). Using (2.2), we
get that

and thus, using (2.3), we arrive at

and thus

which is precisely van der Waerden's expansion, which is similar to the
classical contour expansion of Peierls argument. Concerning Zp*(t), te&~,
consider the linear code <&, obtained by taking the direct sum <^®</>>
where </> is the linear code generated by the singleton {?}. We can write
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But ^ = {w e (^-L- <w, t> = 0}, and it follows that

For completeness, we give a short proof of the identity Ave^//* ) = p*®p >,
p* = pb, P<l /2 . By definition, using the gauge invariance of the FK
measure,

where we have used (2.2), Zn,4(t) = exp( - \E\ftpJ Zfb(t), and p* = /v
Using the gauge invariance of Iv((n)), we can write 2/e^-/{/((«)) =
l/l^l Z^sGF(2)i£i ^t/ ( («))• But (n) e £/y if and only if every cycle of (n) con-
tains an even number of edges of y, taken as subgraph, that is iff y is
orthogonal to every cycle w of %?(n)'L, where #(n) denotes the cut code of
the subgraph (n). Thus (n)eUy if and only if the restriction of y to («) is
element of #(n). It follows that

where nl is the number of edges of (n). We thus get that

\^(n)\ = V(n)\ — |(n) | , where | (n) | is the number of connected components
of (n) and V(n) is the node set of (n). Using the fact that the number i(n)
of isolated points in (n) is such that i(n) = \V\ — \V(n}\ = \\(n)\ - |(«)|, we
get that Aveg)/,(^((n)))=//^), h(pb) = pb/(2- ph), as required.
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Let p> 1/2, and assume that G is bipartite. Then 1 e #, 1 = (1,..., 1 )T,
and, from gauge invariance, Z ,(y) = Z ,(y+ 1) = Z ( 1 _ p )*(y) , where
(1-p)* = 1- = —fip*, and the same identity holds on
the line (1 -p)* =

3. MEAN PAIR CORRELATION FUNCTION

Given i^je V, let Cij be the family of subgraphs (n)e {0, 1}E con-
taining some path of occupied edges pij linking i and j, which is assumed
to be simple (no loops). Given such a path, let gij be any spanning tree of
G containing pij, and let ^ be the associated linear space with

(see Section 2).

Proposition 1. Let p* = I p < I. Then

and

Proof.

where Cij denotes the set of graphs (n) containing a cluster in which nodes
i/:/ j are linked by a path pij of occupied edges. The pair correlation func-
tion is not gauge invariant. Let ,T be a linear supplement of c$. Then the
inner sum becomes

We assume that the path pij is simple. Let gij be a spanning tree of G con-
taining pij. Let ,Ty be the linear supplement of <# generated by the edges of
E\E(gy) (see Section 2). By construction, te^ij^>te = 0 Veep,,. It follows
that (-\)<fu-' + c> = (-\)<»a-c>, \/te^j.

Let (Q, •) be the multiplicative group with componentwise spin multi-
plication, and consider the group homomorphism V: Q -> # given by
y(<7)y. = (l/2)(l-CT,.<7,.). Z(,y)e£(-l)'«^y = I ( y - )e £ ( - l ) ( 1 + c)ij, where we
set c := V(CT) with V( -a) = f ( a ) . Thus Z(ij)eE ( -1)tij JW/o,. = |E| - 2

y(1 - p)/p, p(1 - p)*.
Pb.

- vp/(1 - p),

|t + c|,

&iJ@ g = GF(2 ) | E |
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and it follows that e x p ( p p * H t ( ( r ) ) = e x p ( f l p * \ E \ ) e x p ( - 2 f ! p . \ t + c\). But
p f ( t + c) = ( 1 - p ) W ( p / ( 1 - p ) y + c i , and it follows that

But ( — 1 ) < P i j , C > =atdj, and we arrive at

Using (2.2), we finally obtain that

giving the required formula.
Assume that 0 < p < 1 / 2 . KCT,.^.)^, <^.(/™»y) ^ <o- /<ry>Bot > where

the last inequality holds since I J L ' P * is stochastically dominated by ^°, and
the event {i~~>j} is increasing (see N. (1994)). Thus

and the inequality follows from the gauge invariance of Iv((n)) and
Zn,Pb(y). When 1/2 <p<1, we can write |O,-o)>^.| = | <^o-y)^,,.!.
where 1 =(1,..., 1)6GF(2)|E|, /?(1-p)*= -£,„ and thus |<ff,o>>^| <
(cr,.^.)^ rt>, giving the final result.

Remark 1. Let G = Z2. We get that Ave( g )p«<T,<Ti />^)^0 when
<o'<o>>w°.->0> Ili-y'll-^oo. tnat is when tanh(Jff/>.) = 1 -2/j <(/2- 1, i.e.,
p0<p^\/2, where^0 := 1 — 1/^/2 is the critical parameter associated with
the pair dissociation phase transition (see Schuster (1979), Kolan and
Palmer (1981) or Liebmann and Schuster (1981), and the related discus-
sion in Binder and Young (1986)).

A high temperature expansion of (CT,^-)^. can be derived as in the
ferromagnetic case. It is perhaps interesting to see how one can obtain such
a representation by using tools of coding theory, which deal implicitely



Mean Pair Correlation Function in Ising Spin Glasses 567

with the Fourier transform on linear subspaces of GF(2)|E|. To this pur-
pose, consider the sum

where ^ denotes the subgroup of # consisting in those cuts c which
are orthogonal to pij, that is < c, pij> = 0. Given any linear code Of and
t e GF(2)|E|, t i £, consider the augmented code £t, given by the direct sum
•S?©<0> where <t> is the linear code generated by the singleton { t } .
Then V 7l' + c|_rj/ (7 \—W (7 \ anrl V 7l' + c| _ W (•> \men 2^ct<el,zp — " (tf)}~.zp) "v^ph dna 2*c*vzp — yyf^Pi~
Wv(zp). Using MacWilliams identity (see (2.3)) we obtain that the inner
sum is given by

By construction, \(<#p),\ =2 \<gp and |#,| =2 |#|. Concerning the size 1*^,1,
we need an argument: <&p consists in all cuts having an even number of
edges situated on pij. We can limit the study by considering only sums of
elementary cuts c(k) (see Section 2) with ke V(pij), where V(pij) is the
node set of the path pij. On such a path, the restricted cut code is the full
binary space GF(2)'£(p<i)l, and the number of words of even weight is equal
to the number of words of odd weight, and it follows that 2 \mp\ = \^\. We
get then the equivalent formula

By construction, ^ consists in all w e GF(2)|E| such that < w, c> = 0 Vc e (<Sp.
But every elementary cut c(k), with k situated on the path pij but different
of the ends i and j is in <€p. Every element w of the dual of <€f must have
even degree at these nodes, since <M>, c(fc)> = Y.J-. uw e E wjk = 0 mod 2. For
nodes situated in V\V(pij), the same result holds. It follows that <^X^1

consists in all subgraphs w having even degree at nodes different from i
and j, but at least one node i or j with odd degree. Any graph with these
properties must have odd degree at; and j (£k deg(^) = 2 |E|). Concerning
the augmented codes, we have (%,);"" = {we<£p; <iv, ?> =0}, and <^,"L =
{n-e^-1-; O, />=0}. It follows that (%,)/-Y^;1 consists in all graphs of
^P \^x which are orthogonal to t, and thus consists in all subgraphs with
even degree at nodes different from i and j, odd degrees at i and j, and
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orthogonal to /, that is containing an even number of edges of t. On finally
obtain the expansion
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